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In forced polymer translocation, the average translocation time � scales with respect to pore force f and
polymer length N as �� f−1N�. We demonstrate that an artifact in the Metropolis Monte Carlo method resulting
in breakage of the force scaling with large f may be responsible for some of the controversies between different
computationally obtained results and also between computational and experimental results. Using Langevin
dynamics simulations we show that the scaling exponent ��1+� is not universal, but depends on f . Moreover,
we show that forced translocation can be described by a relatively simple force balance argument and � to arise
solely from the initial polymer configuration.
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I. INTRODUCTION

The force-driven transport of biopolymers through a
nanoscale pore in a membrane is a ubiquitous process in
biology. Despite the complex dynamics involved in the pro-
cess, the Monte Carlo �MC� method has been almost the only
computational method used for modeling it; see the sche-
matic Fig. 1. Only fairly recently more realistic dynamics
have been applied �1–5�. The classic theoretical treatment
based on writing down the free energy for a system of two
equilibrium ensembles separated by a wall �6,7�, henceforth
called Brownian translocation, has not found support from
MC simulations. The close-to-equilibrium dynamics would
validate the derivation of the translocation dynamics using
the Rouse relaxation time or diffusion based arguments. The
validity of assumptions about the diffusion constant along
the polymer chain was questioned already by the authors of
�8,9�, who also noted that the characteristic translocation
time both for phantom and self-avoiding polymer chains was
bound to be greater than their characteristic time for relax-
ation to thermal equilibrium. The theoretical treatment of
forced translocation can be said to have so far been almost
solely guided by MC simulations �10,11�, despite the MC
results contradicting the available experimental results.
Hence the theory has evolved independently of the experi-
mental findings.

In the attempt to determine the dynamical universality of
translocation processes the scaling of the average transloca-
tion time � with respect to the polymer chain length N as �
�N� has been under intensive study. There is an abundance
of research reporting different scaling exponents �. Some of
the lately reported results do find some consistency in �. For
example, both the MC and Langevin dynamics �LD� simula-
tions were reported to give �=2� for short and �=1+� for
long polymers in two dimensions, where � is the swelling
exponent �12,13�. Strictly universal scaling was claimed in
�11�, where �=1.5 was obtained both in two and three di-
mensions.

In addition, several computational investigations have
suggested nearly linear scaling ��=1�. On one hand, this
close-to-linear behavior is prone to appear at the overdamped
�i.e., Brownian� limit without self-avoiding effects, as shown

by MC simulations in �14�. On the other hand, in �15� a �
value close to unity could be inferred, but the polymer chains
were found to be clearly out of equilibrium both on cis and
trans sides in Brownian dynamics simulations, which was
ignored in the interpretation of the results. Linear scaling has
also been obtained from MC simulations in �16� and from an
LD simulation �17�, albeit for moderate ranges of N.

Not only do the different computational results and ac-
companying theories contradict, but they also seem to have
very little to offer in explaining the available experimental
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FIG. 1. Snapshots from three-dimensional �3D� Langevin dy-
namics simulations. �a� A straight initial configuration of a chain
with N=50 beads. �b� A relaxed equilibrium initial configuration of
a chain with N=50 beads. The wide solid line is the pore-to-end
distance Rpe. �c� A chain with N=100 beads translocating with a
force of f /D0=2.91, when s=80 beads have translocated.
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results. For example, the experimental study by Storm et al.
�18� reports �=1.27, whereas the framework based on the
fractional Fokker-Planck equation �FFPE� �10,11� claims
uniform scaling different from this at all forces and is thus
obviously in trouble here. Since there logically exists a re-
quirement for the results obtained by using more realistic
computational methods to be validated not only against ex-
perimental results but also against results from MC model
simulations, a demand is placed for identifying the limita-
tions and possible errors of the MC based translocation mod-
els.

Our recent study using molecular-dynamics-based simula-
tions showed that � depends on the pore force and that the
obtained values for � are in accord with the experiments �5�.
As pointed out by Storm et al. �18�, the experimental pore
force magnitudes are anticipated to be larger than those used
in computer simulations, which would explain the differing
� values. However, larger force magnitudes in the MC
method have been claimed to produce the same scaling rela-
tions as smaller ones. We suggest that saturation of transition
probabilities for large forces in the MC method could be
responsible for this discrepancy between simulated and ex-
perimental � values �18–23�.

Accordingly, we set out to study the forced polymer trans-
location with the pore force f as a control parameter. Three
different methods will be used for modeling the process. The
standard MC method using Metropolis sampling will be
compared with the kinetic �or n-fold� Monte Carlo method
�KMC� �24,25� in one dimension. This comparison is made
in order to characterize the forced translocation process. Dif-
ferences between MC and KMC results would indicate
subtleties in the effective independence of the events com-
prising the system �26�. LD simulations will be used as a
reference in one dimension. With the LD method we also
compute results in two and three dimensions to gain further
evidence for our description of the forced polymer translo-
cation. Finally, we determine the effect of the initial configu-
ration on the scaling of the translocation time �. In order to
be free from potential artifacts due to spatial discretization,
all results are produced by off-lattice simulations.

II. BACKGROUND

The investigation of the dynamics of forced translocation
is subtly related to the assumption of close-to-equilibrium
dynamics. The classic treatments of the problem by Sung and
Park �6� and Muthukumar �7� assumed that a free energy Fs
could be written down for the two ensembles on either side
of the wall, when s segments have been translocated:

Fs

kBT
= �1 − ��ln�s�N − s�� −

s f̃�z

kBT
, �1�

where f̃ is the pore force, and �=0.69 for a self-avoiding
chain �7�. By using the free energy one can write down the
one-dimensional Langevin equation for translocation as a
function of translocation coordinate s when entropic effects
are assumed small:

mṡ = − m��Fs/�s + ��t� = − m� f̃�z + ��t� , �2�

where m, �, ��t�, and �z are the bead mass, friction constant,
random force, and pore length, respectively. From the Lange-
vin equation the scaling of the translocation time with the
pore force �� f−1 is straightforwardly obtained, where f

� f̃b /kBT and b are the dimensionless pore force and the
Kuhn length, respectively. Although the form of the Lange-
vin equation �Eq. �2�� is identical in forced and unforced
translocation, the connection between the free energy Fs and

the pore force f̃ breaks down in forced translocation, where
the pore force is a control parameter. The Langevin equation
approach yields �	N2 and �	N1 as bounds for the translo-
cation time scaling �7,9�. Based on mere unhindered motion
of polymers over potential difference �
� f and the initial
equilibrium configuration, Kantor and Kardar predicted that
the translocation time should scale as �9�

� �
N1+�

f
. �3�

By the computational method where the polymer follows
detailed molecular dynamics and the solvent coarse grained
stochastic rotation dynamics, we have previously found that
the translocating polymers are driven increasingly out of
equilibrium on both sides of the pore under pore force mag-
nitudes relevant in biological and experimental systems �5�.
The dynamics is then mainly determined by the force bal-
ance between the drag force exerted on the mobile beads on
the cis side and the constant pore force, fd= f . Additional
contribution comes from the crowding of the polymer beads
on the trans side due to relaxation towards equilibrium being
slower than the rate at which new segments enter through the
pore. On the cis side the rate at which polymer beads are set
in motion towards the pore was seen to be greater than the
rate at which beads entered the pore, which indicates that the
tension spreads along the polymer faster than what the poly-
mer is able to relax towards equilibrium. By measuring the
rate at which the tension spreads, an estimate could then be
made for the scaling of the translocation time with the poly-
mer length. We will present these observations in the Results
section obtained from the LD method that, due to the ab-
sence of hydrodynamics, shows these characteristics even
more clearly.

III. POLYMER MODEL

In the model system adjacent monomers are connected
with anharmonic springs, described by the finitely extensible
nonlinear elastic �FENE� potential,

UFENE = −
K

2
R2 ln�1 −

�l − l0�2

R2 � . �4�

Here l is the length of an effective bond, which can vary
between lmin� l� lmax, R= lmax− l0= l0− lmin, and l0 is the
equilibrium distance at which the bond potential takes its
minimum value. Choosing lmax as the unit length and R
=0.3 yields lmin=0.4 and l0=0.7. In the standard MC simu-
lations kBT=1 and the spring constant K=40kBT. KMC dy-
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namics proved more susceptible to bond fluctuations than
standard MC dynamics, so kBT=0.1 and K /kBT=400 were
used �see the next section�. The FENE potential suffices in
one dimension.

For two and three dimensions, where the LD method was
used, the Lennard-Jones �LJ� potential,

ULJ = 4�	�

r
�12

− �

r
�6
, r � 2−1/6 �5�

ULJ = 0, r � 2−1/6 , �6�

was used between all and the FENE potential, Eq. �4�, be-
tween adjacent beads. The parameter values were chosen to
be �=1.2 and =1.0 for the LJ, and l0=0, R=1.5= lmax, K
=60 /2 for the FENE potential. The used LJ potential with
no attractive part mimics good solvent condition for the
polymers. Initial states are relaxed equilibrium configura-
tions.

IV. TRANSLOCATION MODELS

In one dimension we study the translocation dynamics
using the MC, KMC, and LD methods. In order to link the
1D dynamics with forced translocation we define the seg-
ment s as translocated, when it passes the original position of
the first bead. Time units cannot be expected to be identical
for the three methods, but the scaling laws given by MC and
KMC must be identical to those obtained from LD, if the
MC and KMC methods are to be taken as representative
models for forced translocation.

One-dimensional off-lattice Monte Carlo simulations are
performed with the standard Metropolis acceptance test. A
transition to a new state is attempted by picking at random a
bead, computing the change in the particle’s potential energy
resulting from an attempted trial move by a distance � from
its present position r, �U=U�r+��−U�r�. Transition is al-
ways accepted for �U�0, and according to its Boltzmann
weight exp�−��U�, if �U�0. Time is incremented after
each attempt, whether accepted or rejected, by a constant
amount �t. For a detailed pseudocode, see Appendix A.

Unlike in the Metropolis MC method, in the KMC algo-
rithm the system is moved to another state at every attempt,
regardless of how improbable the transition is. Accordingly,
KMC has been the choice for doing simulations at low tem-
peratures, where transition probabilities are low and, accord-
ingly, Metropolis MC prohibitively slow. On the other hand,
the additional bookkeeping required in KMC makes it com-
putationally slower than MC at higher temperatures. How-
ever, MC and KMC have profound differences in other as-
pects than just computational efficiency.

In KMC the probability of the move is reflected on the
�stochastically� estimated time �t for the transition to take
place, see Appendix B. Estimation of the elapsed time in-
volves computing the system’s all transfer probabilities, or
rates, pj, from which a cumulative function Ri=� j=1

i pj is cal-
culated. Ri is a class including events, whose probabilities
pj � �pi

min , pi
max�. From the possible transitions j the event to

take place is picked at random, so that Ri−1�uR�t��Ri,

where u� �0,1� is a random number and R�t�=Rl and l is the
number of transition classes. The time elapsed between the
previous and current event is estimated as �t=−1 /R�t�ln u�,
where u��u is a random number. It is noteworthy that the
stochastically determined time increment �t is inversely pro-
portional to the the total probability, i.e., the rate of change
R�t� of the system evolving in time, here the instantaneous
polymer configuration.

Due to finite distance for the trial move � the Metropolis
MC inevitably eliminates very improbable moves, which in
the case of our 1D polymer simulations are those stretching
or compressing polymer bonds far from their equilibrium
lengths l0. Hence as seen in our simulations, bond length
fluctuations are larger in KMC than in MC. To maintain sta-
bility we used a lower temperature in our KMC simulations.
A mere scaling of the bond potential magnitude by reducing
the temperature does not change the dynamic universality
class of the system.

Our LD algorithm was implemented according to �27�.
The LD translocation algorithm was used also in two and
three dimensions. In the algorithm, the pore force f is a free
control parameter and not derived from free energy, as was
done in Eq. �2�. In the initial states the bond lengths are
equal to relaxation distances and the first bead is in the
middle of the pore. The pore diameter is 1.2b and length 3b,
where b=1 is the Kuhn length of the modeled polymer. We
have used kBT=1, �=0.73, and m=16 parameters in the
Langevin implementation. This yields D0�kBT /�m�0.086
for the one-particle self-diffusion constant in one dimen-
sional.

V. RESULTS

Our motivation for evaluating MC based methods in the
context of forced translocation comes on one hand from dis-
crepancies between scaling relations ��N� obtained from
different MC simulations and on the other hand discrepancy
between all MC simulations and experiments. We also look
into the observed separate scaling regimes for short and long
polymers. We base our evaluation of the methods mainly on
the scaling of the translocation time with pore force and with
polymer length. Since we take LD as the reference for the
physical translocation system when hydrodynamic interac-
tions are ignored, we first check these scaling relations using
LD.

Figure 2�a� shows the scaling of the translocation time
with respect to the dimensionless pore force �� f� obtained
from LD simulations in two and three dimensions. The ther-
mal energy kBT was kept fixed in all simulations. We ob-
tained �=−0.990�0.01 in two dimensions and �=
−0.978�0.02 in three dimensions. So, the scaling in these
dimensions is the expected �� f−1 in accordance with Eq.
�2�, confirming that entropic effects are weak.

Figure 2 shows the scalings of the translocation time with
respect to chain length, ��N�, for a frictional and friction-
less pore in two dimensions in Fig. 2�b� and in three dimen-
sions in Fig. 2�c�. The scaling exponents �, identical for
longer chains with frictional and frictionless pores, are
shown in Table I for different values of f /D0. There is a fair
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agreement between our 2D scaling exponents and those re-
ported previously �13�. Qualitatively, the change of � with N
with the frictional pore agrees with the aforementioned LD
results where two scaling regimes were claimed. Accord-
ingly, we obtain a smaller � for shorter chains. However, a
quite different behavior is seen in the case of a frictionless
pore. At a large enough force there exists only one scaling
identical to the common scaling obtained for long polymers
with both pores. Hence the translocation times longer than
what would be expected from this scaling seem to be due to
friction in the confined region inside the pore.

The scaling exponents � obtained in two dimensions,
while agreeing with the results in �13�, seem to be in strong
disagreement with the scaling �=1.53 obtained by 2D MC
simulations for an infinite potential with the pore length �z
=1. In addition, in another MC simulation in two dimensions
�=1.70 has been obtained for two different forces f =1,5
with �z=3 �12�. So, not only do MC results contradict with
LD results, but MC simulations mutually disagree. To check
if this could be due to the MC translocation model possibly
belonging to a different dynamic universality class from the
respective LD model we simulated the simplest possible
case, i.e., 1D forced translocation using KMC in addition to
MC and LD. We obtain invariably �=2 for LD, MC, and
KMC, in agreement with the previous MC result �9�, so the

computational MC model using Metropolis sampling seems
to produce correct time dependence, although forced translo-
cation can hardly be taken as a purely Poissonian process
�26�. However, we do find a method-dependent artifact
which explains the apparent discrepancy.

Also in one dimension the translocation time obtained
from LD simulations is found to scale with the pore force as
�� f−1; Fig. 3�a�. MC and KMC models also give this scal-
ing with pore force f �1. However, for f �1 the transloca-
tion time levels off to a constant value. Potentially, KMC
might not be as sensitive to this artifact, as will be discussed
in more detail later. However, KMC algorithm fails to run
with so large a force, due to the above-explained higher
probability of moving a particle regardless of whether a bond
breaks or not. In two dimensions the breaking of the force
scaling has been reported in MC forced translocation simu-
lations in two �12� and three �16� dimensions. Our simula-
tions strongly imply that it is related to the saturation of the
transition probabilities in MC at large force values inside the
pore �see Appendix A, step 6�.

The discrepancy between the different � values obtained
from MC simulations can be explained by this artifact related
to Metropolis sampling. The infinite force for which �
=1.53 was obtained �9� takes the MC model to the plateau
region �f �1�, where f =� is no different from f =1 in that it
gives identical velocity v to the translocating polymer, when
the pore length �z is constant. However, by increasing �z
while keeping the force acting per polymer bead f constant,
does increase pore potential and thus the polymer velocity v
which in turn, according to our simulations, increases � �see
Fig. 2 and Table I�. The pore potential �U over the pore is
explicitly shown to be the primary control parameter for
forced translocation in Table II, where translocation times are
compared when either the force acting on polymer beads
inside the pore or the pore length is changed in the LD
model. In �9� �z=1, while in �12� �z=3 was used. Of the
two force values f =1,5 in �12� the latter is within the plateau
regime and the first at least very close to it, which would
explain the obtained almost identical � values. Due to f =�
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FIG. 2. �a� The scaling of the translocation time � with respect to the external force f . Results from two dimensions ��� and three
dimensions ��� Langevin dynamics simulations yield the same f �N−1 scaling. Since the simulations were done with the only difference in
dimension, we note that in higher dimension the translocation process is faster. �b� 2D and �c� 3D Langevin dynamics simulation results for
the scaling of the translocation time � with respect to chain length N with various forces. Open symbols are with frictional pore and full
symbols are with a ballistic pore. All plots yield different values for the scaling exponent � which are reported in Table I along with their
corresponding forces. The finite size effect due to the frictional is identical to the 1D case �see text�. With f =10 only chains with N
�200 follow the asymptotic scaling behavior. If the pore is nonaqueous �i.e., ballistic� the finite size effect applies only for chains smaller
than N=30, and is amplified by reducing the force.

TABLE I. Langevin dynamics. Values of � obtained from Fig.

2. Here U= f̃�z /kBT is the dimensionless pore potential.

U f /D0 � �d=2� � �d=3�

0.0036 0.014 1.52�0.08 1.40�0.04

0.0075 0.03 1.40�0.02

0.03 0.35 1.54�0.03 1.43�0.02

0.75 2.91 1.58�0.01 1.44�0.03

3 11 1.63�0.04 1.47�0.05

30 116 1.68�0.02 1.50�0.01
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being in effect just the constant force value in the plateau
regime, �U in �9� is lower than what was used in �12�, which
explains why this � value for the infinite force is lower than
what was obtained for force values 1 and 5. The saturation of
the transition probabilities could also be the reason why in
three dimensions MC simulation results presented in �11� to
support FFPE predictions the value of � did not change,
when the pore force was varied. Hence it would seem that
there is no reason to assume a universal � for all f .

The prevailing discrepancy between simulations can be at
least partly explained by the deficiency of the MC method at
large force regime, which is the biologically and experimen-
tally relevant force range. For example, the Kuhn length of

the single-stranded DNA �ssDNA� b̃=1.6 nm, and a charge
density 1.28e /nm reported in �28� for free ssDNA in an ionic

solvent would result in the effective charge of 2 e / b̃. Taking
into account that the pore is prone to screen the charges even
more than the solvent �29� the effective charge on a nucle-
otide traversing the pore was estimated to be �0.1e. In the
�-hemolysin pore of length 5.2 nm there are approximately
13 nucleotides of length 0.4 nm �30�, yielding total effective
charge q*=1.3e for the polymer segment inside the pore. The
typical experimental pore potential is V�120 mV �18–21�.
At T=300 K, the dimensionless ratio U=q*V /kBT�6.03 is
obtained, which corresponds to the dimensionless value U

= f̃�z /kBT. Accordingly, the corresponding dimensionless

force f = f̃b /kBT has a value of 2 in our MC simulations,
which is already well in the plateau regime; see Fig. 3�a�.

We checked the effect of the pore friction in one dimen-
sion, where dynamics is no more constrained inside than
outside the pore, making comparison of the cases with fric-
tional and frictionless pores straightforward. The same char-
acteristics as in higher dimensions were seen. With a fric-
tional pore �=2 is obtained only for N�30. From 1D LD
simulations with a frictional pore this maximum length lmax
was seen to increase with pore force f . Increasing f increases
the average velocity of the polymer �v� and so increases
frictional contribution. Since the force acts only on the part
of the polymer inside the pore, at large enough force fric-
tional term damps movement only in the direction from the
cis to trans side thus increasing the translocation time pro-
portionately more for short than long polymers. At a very
weak force this effect is not perceived due to friction affect-
ing movement in both directions �i.e., also from trans to cis�,
as seen also in dimensions 2 and 3 from the topmost curves
in Figs. 2�b� and 2�c�. This is by definition a finite-size effect
and bound to affect the obtained � more for shorter poly-
mers, where the portion in the pore constitutes a larger part.
The decrease of � due to pore friction is understandable,
since in the asymptotic limit of completely friction-
dominated dynamics linear scaling, �=1, with polymer
length is to be expected.

We measured the center-of-mass velocity �vcm
z � in the z

direction, which is the direction perpendicular to the wall
from cis to trans, with a frictional and frictionless pore; see
Fig. 3�b�. Comparing the 1D curves obtained from LD and
MC in Figs. 3�a� and 3�b� it is clear that �vcm

z � is not simply
reciprocal of �, which indicates that one must be cautious in
applying equilibrium concepts and observables in character-
izing translocation. Based on this finding, using �z0� /�,
where z0 is the z coordinate of the last polymer bead in the
initial equilibrated configuration, is not equivalent to using
�vcm

z � for translocation velocity. In one dimension it is par-
ticularly clear that the first definition simply sets the translo-
cation velocity v�1 /�, a valid definition for translocation
velocity, but one that also easily leads to drawing wrong
conclusions about translocation dynamics. Comparing Fig.
2�a� and 3�b�, the same characteristics is seen in dimensions
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FIG. 3. �a� Comparison of the scaling of translocation time � �in arbitrary units� with pore force f in one dimension obtained from MC
���, KMC ���, and LD ��� simulations. Polymers are of constant length N=50. All computational methods yield the same force scaling
�� f−1 for f �1. The MC method shows an artifact in the force regime f �1. KMC fails to perform in this regime �see text�. �b� The average
center-of-mass velocity in the z direction, �vcm

z �, as a function of the dimensionless pore force f , for N=20 ��, �� and N=50 ��, �� in one
dimension, for N=100 ��� in two dimensions, and for N=100 ��� in three dimensions. The data for ��� and ��� were obtained using a
frictionless pore in LD simulations. All other results are from LD simulations using a frictional pore. Linear scaling is plotted as a solid line
to guide the eye. At the bottom, results from 1D MC simulations ��� with N=50 are shown �in arbitrary units�. See the text for details.

TABLE II. Results from 3D Langevin dynamics for a polymer
of length N=100. Here �U� f�z /kBT is the dimensionless poten-
tial over the pore.

�U f �z �

30 10 3 326�10

15 10 1.5 642�20

30 20 1.5 354�10
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2 and 3. From Fig. 3�b� it is seen first of all that the artifact
in MC at large force magnitudes manifests itself in �vcm

z �
measured in the 1D system. Outside of that, the �vcm

z �f��
curves for 1D MC and LD are qualitatively fairly similar.
The additional regime at very weak force magnitudes in LD
was checked to be related with the form of the FENE poten-
tial, showing distinctively in one dimension where it is the
only potential between polymer beads.

To make sure that we are seeing finite-size effects for
short polymers with a frictional pore instead of two scaling
regimes for short and long polymers, we also check the de-
pendence of �vcm

z �f�� on polymer length N. In accord with the
findings in �9� the center-of-mass motion of a polymer trans-
locating through a pore closely conforms to unimpeded mo-
tion, where �vcm

z ��1 /N with both the frictional and friction-
less pore; see Fig. 4. It is evident that pore friction does not
affect the behavior of �vcm

z � that is a measure of the transfer
of the whole polymer. Hence the differences in Figs. 2�b� and
2�c� have to come solely from the frictional contribution to
the finite portion of the chain in the pore. The effect is seen
clearly in � that is a local observable quantifying the transfer
of the segments over the pore.

The above observation that �vcm
z �f���1 /��f� indicated

that the transfer of the part of the polymer crucial for char-
acterization of forced translocation, i.e., the part in the vicin-
ity of the pore does not remain even close to thermal equi-
librium. Any meaningful description of the translocation
process must then succeed to capture the mechanics of this
part. Given that any diffusive, or close-to-equilibrium de-
scription is invalid, the remaining minimum condition is
force balance. Indeed, it turns out that the observed scaling
behavior ��1+� in two and three dimensions can be ex-
plained by the force balance of the drag force exerted on the
mobile beads on the cis side and the constant pore force,
fd= f . Just as in �5� we measured the squared distance Rpe

2 �n�
�see Figs. 1�b� and 5�, of the polymer bead n from the pore
on the cis side during translocation, see Fig. 6�a�, from which
the segments toward the free end of the polymer are seen to
remain immobile until they are pulled toward the pore. Fig-
ure 6�b� shows that the number of mobile beads increases
linearly as a function of translocated beads, sm=ks. Up to

lengths of N�100, k�N−�, beyond which it gradually levels
off to a constant value greater than unity. The mobile beads
comprise a moving segment, which already for moderate
pore force exhibit no folding indicating that the relaxation of
the beads in the moving segment is far slower than the rate at
which they are translocated, see Figs. 1�c� and 5. fd is ex-
erted on the mobile beads, so fd�sm�v�, where �v� is the
average velocity of the mobile beads. When the whole chain
has translocated, fd�Nm�v�, where Nm=kN. The beads are
set in motion from their equilibrium positions, so the dis-
tance d of the last bead to be translocated scales as d�N�.
The average translocation time then scales as ���d� / �v�
�kN1+��N1+�−�. For example, for f /D0=2.9, we obtain �
�0.3 from the data displayed in Fig. 6�b�, which would give
��1.3. The crowding of polymer beads close to the pore on
the trans side �see Fig. 1�c�� increases � from this value. The
crowding increases with force, which has been shown in �5�.
From Fig. 6�b� it can be seen that k saturates when f is
increased, which also increases � at large f .

In order to confirm that the presence of � in the scaling
exponent �=1+� comes solely from the initial configuration
and not from any factor due to close-to-equilibrium motion
and Rouse relaxation time, we check the scaling and the
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FIG. 4. This �a� The average center-of-mass motion along the translocation coordinate �vcm
z � as a function of the chain length N in one

dimension, with Langevin dynamics. Two different pore forces f =0.1 ��, �� and 20 ��, �� have been used. Both frictional ��, �� and
frictionless ��, �� pores were used. MC results in one dimension with f =0.1 ��� and 20 ��� are also shown �in arbitrary units�. The solid
and dashed lines have a slope of −1. �b� �vcm

z � as a function of the chain length N. Results are from Langevin dynamics simulations in two
dimensions ��, �� and three dimensions ��, ��, with two different pore forces f =0.25,10 for the lower and higher points, respectively.
Both frictional ��, �� and frictionless ��, �� pores were used. The solid lines �1 /N are plotted to guide the eye.

TRANS

CIS

FIG. 5. A snapshot at s=35 of a 3D LD simulation with a
polymer of length N=100. The dimensionless pore force used here
is f =0.01. The wide solid line represents the pore-to-end distance
Rpe as the number of mobile beads sm reaches the index of the
observed bead, n=52.
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average waiting time t�s� for the segment s to translocate for
an initially extended configuration; Fig. 1�a�. We obtain �
=2 for this initial configuration. The average waiting time
profiles of the initially extended and equilibrated configura-
tions are shown in Fig. 7. For the initially extended configu-
ration we obtain linear dependence t�s��s giving exactly the
obtained scaling with �=2. Hence the upper limit for the
scaling exponent � results from the waiting times of the
translocating beads, determined solely on their initial posi-
tions. In other words, already with a moderate pore force
translocation velocity completely dominates the process so
that diffusive motion has no effect and the the only prevail-
ing condition governing translocation dynamics is the force
balance described above.

VI. SUMMARY

We have studied forced translocation without hydrody-
namics in different dimensions using Monte Carlo �MC�, ki-
netic Monte Carlo �KMC�, and Langevin dynamics �LD�
methods. We have shown that the forced translocation model
using MC with basic Metropolis sampling gives the correct
time dependence at moderate pore potentials but presents an
artifact at large pore potentials. This artifact seems to explain
the prevailing controversy between different MC results. It
also seems to account for results claiming universal scaling
of the translocation time with the polymer length, ��N�,
independent of the pore force magnitude and hence the pre-
vailing discrepancy between computational and experimental
findings on forced translocation.

Using LD in two and three dimensions we have shown
that the scaling exponent � increases with the pore force f .
We obtain �=1+� as the high force limit. By measurements
of polymers’ center-of-mass velocities we have shown that
description of forced translocation with concepts related to
close-to-equilibrium concepts is not well founded. We have
given a description of the forced translocation based on
simple force-balance condition, where the drag force exerted
on the part of the polymer on the cis side changes with the
number of polymer beads in motion. This description gives
the above upper limit for � and also explains the increase of
� with f . We have also shown that crowding of polymer
beads is strong in the vicinity of the pore on the trans side.
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APPENDIX A: METROPOLIS MONTE
CARLO ALGORITHM

1. Choose an initial state, and set the time t=0.
2. Randomly choose a particle with label i, and calculate a

trial position ri�
� =ri

� +�ri
� .

3. Calculate the energy change, �U=−f i
� ·

�ri
�

��ri
� �

+UFENE�ri
�

+�ri
� �−UFENE�ri

� �, resulting from this displacement.
4. If �U�0, the move is accepted; go to step 2.
5. Get a uniform random number u� �0,1�.
6. If u�exp�−�U /kBT�, accept the move.
7. Update the time t= t+1 /N and go to step 2.

APPENDIX B: KINETIC MONTE CARLO ALGORITHM

The KMC algorithm for simulating the time evolution of
a system where some processes occur with known average
rates, or probabilities, pi=exp�−�U�, where �U is as defined
in Appendix A, can be written as follows:

1. Choose an initial state, set the time t=0, and form a list
of all possible rates in the system pi.

2. Calculate the cumulative function Ri=� j=1
i pj for i

=1, . . . , l, where l is the total number of transitions. Denote
R=Rl.

3. Get a uniform random number u� �0,1�.
4. Find the event to carry out by finding the i for which

Ri−1�uR�Ri.
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FIG. 7. �Color online� 3D LD. Waiting time averages t�s� as a
function of the translocated segment s with f /D0=2.91. Profiles
with filled �N=50: �, N=100: �, N=400: �� and empty symbols
�N=50: �, N=100: �� represent runs with an equilibrium initial
configuration and with a straight initial configuration, respectively.
Note that the latter profiles yield a clear linear behavior.
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b) FIG. 6. �Color online� �a� 3D Langevin dy-
namics. Averaged squared distances of beads
numbered 30, 50, 70, 100, 200, and 400 from the
pore as a function of the number of translocated
beads s for polymers of length N=100. The force
f =0.25. �b� The number of mobile beads sm vs
the number of translocated beads s, both normal-
ized to the polymer length N.
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5. Carry out event i.
6. Recalculate all rates pi which may have changed due to

the transition. If appropriate, remove or add new transitions
i. Update N and the list of event rates accordingly.

7. Get a new uniform random number u�� �0,1�.
8. Update the time with t= t+�t, where �t=− ln u

R .
9. Return to step 2.

�Note that the same average time scale can be obtained
also using �t= 1

R in step 8. However, including the random
number describes better the stochastic nature of the process.�

This algorithm is known in different sources variously as
the residence-time algorithm or the n-fold way or the Bortz-
Kalos-Lebowitz �BKL� algorithm or just the kinetic Monte
Carlo �KMC� algorithm.
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